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Phase separation near the Mott transition in La2_,Sr,CuO4 
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Department of Physics, Boston University, Boston, MA 02215, USA 

Received 19 July 1989 

Abstract. Competition between the Mott transition and Fermi surface nesting in a Cu-02 
plane is studied in the limit of infinite on-site Coulomb repulsion . By incorporating direct 
0-0 hopping, the nesting condition (Fermi surface at van Hove singularity) can be shifted 
away from half filling. The Mott transition (actually a transition to a charge transfer 
insulator) remains at half filling, driven by electron correlation effects, herein described via 
a slave boson formalism. Away from half filling, electron-phonon coupling leads to a phase 
separation into the insulating phase near half filling, and a metallic phase close to the van 
Hove singularity. The consequences of this phase separation for high-T, superconductivity 
are briefly discussed. 

1. Introduction 

In the new, high-T, superconducting oxides, typefied by La,-,Sr,CuO, (LSCO) and 
YBa,Cu,O,-, (YBCO), there is an intimate competition between an insulating, anti- 
ferromagnetic phase and the metallic, superconducting phase. Since the insulating 
phase occurs close to half filling of the Cu-0, antibonding band (x 2: 0 for LSCO), it 
is believed that this phase is produced by strong electron correlation effects (on-site 
Coulomb repulsion, U ) .  Modelling this competition theoretically has proven difficult. 
One approach is to start with a model of the antiferromagnetic insulator, and then study 
the effect of doping it with additional holes. Alternatively, a number of groups [l-31 
have incorporated correlation effects into a Fermi liquid picture, via a slave boson 
formalism [4-61. This procedure, initially developed to describe intermediate valence 
and heavy fermion compounds, introduces a boson on each Cu site to constrain the 
system against double site occupancy. Applying this formalism to the copper oxide 
superconductors, the insulating phase is found to be a charge transfer insulator [3], 
rather than a Mott-Hubbard insulator, in the notation of [7]. 

I have previously suggested [8] that structure in the density of states (DOS) plays 
an important role in high-T, superconductivity. In particular, there should be a sharp 
peak in the DOS associated with the van Hove singularity (VHS), where the Fermi 
surface first intersects the Brillouin zone boundary and nesting is optimal. While the 
slave boson approach is ideally suited for analysing such effects, the previous models 
must be modified. Most [l, 31 have utilised a simplified band structure which requires 
the VHS to lie exactly at half filling, which disagrees with detailed band structure 
calculations. On the other hand, Newns et a1 [2]  introduce a very complete band 
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structure model, which is difficult to use in simple calculations. In this paper, I present 
a simple band structure model, suitable for slave boson calculations, in which the VHS 
can be arbitrarily positioned. The model is applied to two calculations. First, it is 
shown that shifting the DOS peak away from half filling has virtually no effect on the 
transition to an insulating phase. Secondly, it is shown that this DOS peak plays a very 
important role away from half filling. In particular, the VHS causes a minimum in the 
structural free energy, leading to an instability of the uniform phase (miscibility gap) 
in materials doped away from the VHS. As discussed elsewhere [8,9], this DOS peak 
also plays a much more direct role in high-T, superconductivity. 

The Cu-0,-plane band structure is modelled by coupling three orbitals: the Cu 
d,2_).2 and one p orbital from each of the two 0 atoms in the unit cell. The three bare 
band parameters are AE = E,, - E,, the difference between the Cu and the 0 energy 
levels; tCuO, the Cu-0 hopping matrix element; and too, the 0-0 direct hopping 
element. The energy dispersion relations were discussed in [8]. For present purposes, it 
is sufficient to consider a two-band approximation: 

where rf = sin2(k,a/2)+sin2(k,a/2), Ep = 2tO0 sin(k,a/2) sin(k,a/2), and a is the lattice 
constant. Figure 1 shows the resulting Fermi surface at half filling for several values 
of the parameters. Note that the centre of the Brillouin zone is chosen such that 
k, = ky = 0 corresponds to the top of the antibonding band (the M point in the usual 
Brillouin zone). 

Figure 1. Renormalisation of the Fermi surface at half filling as a function of A E .  Curves 
correspond to n = 1, too = 0.48 eV, points in inset: full curve, 1 ;  broken curve, 2; 
chain curve, 3. Dotted line is the Fermi surface for too = 0, independent of t R .  Inset: 
renormalisation of tCuO as a function of AE, for too = 0 (dotted curve); 0.24 (broken 
curve) ; 0.48 eV (full curve). 

On-site (Cu) Coulomb repulsion U is incorporated via the slave boson formal- 
ism [l-61. The present calculation follows Kotliar, Lee and Read [l]  (KLR). Inclusion 
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of the on-site Coloumb repulsion renormalises the parameters AE and tCuO, shifting 
and narrowing the Cu band. The slave boson technique allows these effects to be 
incorporated by requiring the real d hole plus the boson to satisfy a sum rule which 
prevents double occupancy of the Cu orbital. In mean field, this sum rule becomes: 

where f ( E )  is the Fermi function, ro is the mean-field amplitude of the slave boson, 
and U k  is the d-wave amplitude of the wavefunction. The chemical potential is chosen 
such that 2 x k f ( E k )  = n = 1 fx in LSCO, where n is the number of holes per unit cell. 
The d-band renormalisation is given by 

For given values of AE,  tCuO and too, equations (2)  and (3) are solved self-consistently 
to yield values of AE,  and ro, or equivalently of the renormalised Cu-0 hopping matrix 
t R  = 4 rotCuO. The self-consistency arises because the renormalised parameters AER 
and tR are used in the dispersion relation, ( 1 )  (too is assumed to be unaffected by 
renormalisation). 

If tCuO = 0, the dispersionless d band is completely decoupled from a p band of 
width 4tO0 (recall that (1) ignores the bonding part of the Cu-0 bands). For finite 
tCuO, the renormalisation depends sensitively on the band filling. When too = 0, an 
approximate analytical solution can be found [l]. For finite too, the following results 
were evaluated numerically. In these calculations, the values of tCuO = 1.2 eV, and 
too 2 0.0-0.5 eV were chosen as approximately representative of LSCO, while AE was 
varied in the range 0-6 eV. The numerical calculations are restricted to T = 0, and are 
carried out by adjusting the values of t,, AER until equations (2)  and (3) reproduce 
the values of AE and tCuO. There is always a solution to equations (1)-(3) with ro = 0, 
and this solution is assumed to hold when the numerical calculation fails to converge. 

2. Insulating state at half filling 

When too = 0, the Fermi surface at half filling is square (dotted line in figure l), leading 
to perfect nesting, which should drive a transition to an insulating phase. Letting too 
differ from zero shifts the nesting condition away from half filling, figure 1, thereby 
allowing separation of the effects of nesting from those of double Cu occupancy. 
Figures 1-3 show that these latter correlations still drive a transition to an insulating 
state at half filling, if the ratio AE/tcuo is large enough. For the present example, 
tCuO = 1.2 eV, the bandwidth tR is renormalised to approximately zero for AE 2 4-6 eV 
(inset, figure 1). This result depends only weakly on too. The renormalised carriers 
have a large DOS at the Fermi level (figure 2),  and hence a large effective mass, and 
the Fermi surface is renormalised in the direction of perfect nesting (figure 1 ) .  For 
small but finite tR ,  the deviation of the Fermi surface from square is a function of 
too/AER, independent of tR. This still decreases as AE increases, because AER is an 
increasing function of AE.  However, if AE is large enough, tR  = 0 (inset, figure l), 
so the dispersion becomes meaningless. As shown by KLR, the system passes over 
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Figure 2. Renormalised susceptibility, -xm, plotted against hole concentration for several 
values of A E  with tCuo = 1.2 eV, too = 0.48 eV. In order of increasing I ,  the curves 
correspond to A E  = 2.4, 3.6, 4.2, 4.4, 5.0, 5.4 and 6.0 eV. Inset: blow-up of low-100 data. 

to a Nkel ground state (charge transfer insulator) when the renormalised bandwidth 
becomes smaller than the superexchange constant, J .  

Figure 2 shows the renormalised magnetic susceptibility, zoo, as a function of n for 
various values of A E .  Here, 

For small values of A E  and too # 0, - ~ o o  has a weak peak at finite n-1, corresponding 
to the (renormalised) VHS. As A E  increases, this peak turns into a shoulder. Meanwhile, 
a large peak grows at n = 1. Note the extreme sensitivity of this peak to A E ,  typical of 
a Kondo effect. The ground-state energy E,  can be separated into a quasi-particle part 
( E )  = 2 x k f ( E , ) E k  and a slave boson contribution E ,  = ( A E ,  - A E ) ( 2 r i  - 1). Thus, 

E ,  = ( E )  + E B .  ( 5 )  

The quasi-particle energy ( E )  shows a drop near half filling which becomes sharper as 
A E  increases, and is discontinuous [l] when t, = 0. This jump is a direct consequence 
of the infinite value of U .  To avoid double hole occupancy of any Cu atom while 
maintaining n > 1 requires significant hybridisation with the 0 band. Hence, as n 
passes through 1, A E ,  must shift from a value near A E  to a value near zero [l]. 
However, this discontinuity is exactly cancelled by the term E,, and, as tR + 0, E ,  
develops a cusp at half filling, inset to figure 3. Because of this cusp, the insulating 
state is only energetically stable if it is impossible to form states with n < 1. This is 
true in LSCO, where n < 1 corresponds to Sr contents x < 0. 

The values of the the band structure parameters I have employed are in good 
agreement with recent theoretical determinations of these values [lo] for LSCO, as 
illustrated in table 1. The parameters can all be scaled by the same value, to bring 
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Figure 3. Average hole energy ( E )  plotted against hole concentration, for same parameters 
as in figure 2. Inset: Eo - A E ,  for same parameters. 

tCuO into exact agreement, but the parameter too is fixed by the location of the VHS, 
while AE must be large enough to account for the transition to the insulating state 
at half filling, AE = 3(tCu0 + too). The doping dependence of T, does not precisely 
fix the value of x at the VHS, allowing a range x N 0.15-0.2. The value of too found 
in [IO] produces an acceptable value, x = 0.178 at the VHS. (As mentioned above, the 
larger value of too will cause AE to be larger by - 0.4eV.) Whereas band structure 
calculations initially indicated that AE was small, Hybertsen et a1 [lo] pointed out 
that these calculations already include correlation effects on average, and that the 
bare value of AE is considerably larger. Two theoretical values of AE are listed in 
table 1. This is because the present calculation does not explicitly consider the near- 
neighbour Coulomb repulsion parameter V ,  so the parameter AE should assume a 
value intermediate between the true AE and AE + 2V. It is the latter value which 
controls the proximity of the system to the insulating phase [3]. This value is in good 
agreement with the values found in figures 2 and 3 at the onset of the sharp rise in 
-1,. In the remainder of this paper, in particular in figures 4 and 5, I will incorporate 
the parameter values of [lo]. 

Table 1. Energy band parameters. 

Parameter [IO] and figures 4 and 5 Scaled? figures 2 and 3 

k u O  (ev) 1.3 
100 (eV) 0.65 
A E  (eV) (3.6) 

6.0$ 

1.3 
0.52 

5.4-5.8 

t Using a scale factor S = 1.083. If all energies are multiplied by S and all susceptibilities 
and DOS divided by S, the results of figures 2,3 remain correct. 
$ Actually A E  + 2V, where V is the nearest-neighbour Coulomb repulsion. 

The stability of the Fermi liquid state with respect to the antiferromagnetic insulator 
may be determined by comparing E,  to the energy in the insulating state. This latter 
quantity may be approximately estimated from the mean-field result, AEAF = -J(x). 
This overestimates AEA,  at room temperature, because there is no long-range order. 
However, there is a strong two-dimensional order, so the error should be relatively 



670 R S Markiewicz 

small, of order - T,,,/2J N 10%. Following [ l l ] ,  

J ( x )  = J + K ’ x  + 8Jx2 (6) 

where K’ = ( K  - 75)/4, and K is the ferromagnetic exchange constant, with J 2 

116 meV and K N 25 [12]. Experimentally, the Nee1 phase is stable only to x N 0.02. 
Using the band parameters of [lo] (table l), the energies of the two phases are equal 
at x N 0.028, in good agreement with experiment. 

3. The VHS 

In this Fermi liquid approach, there is a striking difference between the electric and 
the magnetic response of the system. The magnetic response is controlled by the 

04 
renormalised susceptibility function, equation (4) and figure 2.  Near half filling, x 
is largest for q on the Brillouin zone boundary, as expected for an antiferromagnetic 
instability; as holes are introduced, the uniform susceptibility, xoo, becomes dominant 
(figure 4), i.e. the holes favour ferromagnetic coupling. 

01 1 I I I 
0.9 1.1 1.3 

n 

Figure 4. Magnetic susceptibilities (dotted curve) and X O C , ~  (broken curve), where G10 

is the reciprocal lattice vector with h = 1, k = 0. Shown also are the bare DOS, No(EFj 
(chain curve), and the renormalised DOS, N ( E F )  (full curve). Parameters are fcu0 = 1.3 ev, 
too = 0.65 eV, AE = 6.0 eV. 

The electric response is given by a very similar susceptibility function, only renor- 
malised by Fermi liquid effects [13] : 

where F,, = m*/m = -~oo/N,(EF), m* is the renormalised mass, and N,(E,) is the DOS 
of the unrenormalised bands. The renormalised DOS is given by N(E,)  = -zoo. When 
F,, 9 1, this renormalisation produces a very striking result: whereas the magnetic 
response peaks at half filling, independent of too, the electric response peaks at the VHS. 
For instance, as F,, -+ cc, N(EF) -+ N,(E,). Figure 4 contrasts the hole dependence of 
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xoo and zoo, showing that the latter peaks at the same hole density as N,(E,). Both No 
and N have a weak divergence at the VHS. For too = 0, both diverge as log2(E), but 
more weakly, - log(E), for too # 0. To keep the DOS values finite, they are broadened 
in energy by 20 meV. This is of the magnitude expected for the combined effects of 
thermal and disorder broadening and c axis dispersion [8]. 

The Fermi liquid correction has a number of important consequences. For in- 
stance, in a one-dimensional metal x and ? diverge at the same time, leading to a 
competition between CDW, spin density wave (SDW), singlet superconducting (Ss) and 
triplet superconducting (TS) instabilities. In the present two-dimensional model, these 
divergences are well separated, with SDW and TS instabilities associated with half filling 
and CDW and SS occurring at the VHS. (For simplicity, I label the phase in which the 
vHS coincides with the Fermi level as the VHS phase.) I have previously suggested [8] 
that high-T, superconductivity is associated with a competition between CDW and SS 
formation, just as in the A15 compounds, and, indeed, in the BaPb,-,Bi,O, system. 

Moreover, the peak in charge susceptibility confers a special stability on the VHS 
phase. There is a minimum in the structural free energy at this composition. Hence, 
materials doped away from this composition may be structurally unstable (miscibility 
gap), breaking up into a two-phase mixture with one phase at the VHS concentration. 
This stabilisation arises through the electron-ion interaction, in a manner similar 
to the Freidel model [14] for three-dimensional Hume-Rothery phases [ 151. Within 
the present model, this stabilisation can be calculated using standard results for a 
pseudopotential theory which has been applied to a number of Cu bronzes [16]. These 
previous applications have, however, involved nearly free (s, p) electron susceptibilities, 
rather than the tight-binding bands used here. In analysing the total free energy of the 
coupled electron-ion system of the alloy, it is found that the structure sensitive part of 
the free energy is dominated by a single term 

where Af,,, is the structural free energy per ion, n the ionic density, o(G) = 4ze2/cG2, 
E z 6.5 is the dielectric constant, G a reciprocal lattice vector, the prime on the 
summation means G # 0, and zG is the susceptibility 

Applying this to a CuO, plane, the periodicity of the tight binding bands ensures that 
xOG has the same value for each G in the original (‘tetragonal’) lattice. For a reciprocal 
lattice vector of the ‘orthorhombic’ 4 x f i  superlattice, G,, = ( h  + k,  h - k ) z / a ,  there 
are two susceptibilities, zg and 2 depending on whether h + k is odd or even. Figure 5 
plots the free energy per hole F = ( E ,  - AE + A f s t r ) / n ,  using the same parameters as 
figure 4 [lo], with A E  = 6.0 eV. The broken curve in figure 5 shows the energy lowering 
near half filling produced by the antiferromagnetic insulating state, equation (6). 

Stability of the various phases can be determined from figure 5 by using a standard 
tangent construction technique (dotted line). Since this dotted line falls below the free 
energy curve over a certain range of n values, a homogeneous material prepared at 
that composition will be unstable with respect to a heterogeneous mixture of the two 
phases corresponding to the end points of the dotted line, with the relative proportions 
determined by a lever rule. Note that this construction again assumes that states with 
n < 1 are physically inaccessible. Figure 5 clearly shows that a two-phase decomposition 

- 
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Figure 5. Average structural free energy AF = F ( n )  - F(l)  + 1.965(n - 1) eV (full curve) 
plotted against hole concentration. The broken line is the estimated modification due to 
antiferromagnetic phase. The dotted line shows free energy lowering due to two-phase 
coexistence. Note that a term linear in ( n  - 1) has been added to AF to remove an 
uninteresting monotonic contribution. This term has no effect on the tangent construction. 
Parameters are as in figure 4. 

should occur both at higher dopings than the VHS, and near half filling. This implies 
that the unijiorm state is unstable away from the van Hove singularity, thus confirming 
an earlier prediction [17]. The value of the two-phase stabilisation energy, 60 meV, 
is comparable to those found in conventional Hume-Rothery phases [14-161. 

Note that the details of the phase separation between half filling and the VHS 
are sensitive to the precise form of fstr, and hence may be somewhat different from 
figure 5. Thus, in figure 8 of [sa], the free energy was calculated using the bare DOS, 
No(EF), rather than the properly renormalised value, N(E,) .  While these two functions 
are similar, figure 4, the differences are sufficient to modify the range over which the 
uniform phase is unstable. Other contributions to the free energy (e.g. free energy 
of mixing of Sr or excess 0) may also affect this instability. These contributions are 
likely to be monotonic in n (insensitive to the vHS), and hence have only a small 
effect. Thus, any contribution which is linear in n will have absolutely no effect on the 
phase transition. However, the (unknown) sign of the curvature of the residual terms is 
important, and these terms can expand or decrease the range over which the instability 
occurs. 

4. Discussion 

These results can most directly be applied to the LSCO family of superconductors. 
A similar picture presumably applies to YBCO as a function of oxygen deficiency 6 ,  
although complications arise due to oxygen vacancy ordering and possible carrier 
transfer to the Cu-0 chains. So far, an insulating phase similar to La,CuO, or 
YBa,Cu,O, has not been reported for the Bi or T1 families of superconductors. Near 
half filling, LSCO is an antiferromagnetic insulator. This is compatible with A E  2 5 eV, 
causing t ,  = 0 and an instability to a commensurate spin-density wave. 

Away from half filling (x > 0), there is considerable experimental evidence [8,18,19] 
that the material is a two-phase mixture away from x = 0.15. It is not clear that these 
two phases involve Sr segregation, which is limited by the slow Sr diffusion rate. Instead, 
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there may be a purely electronic phase separation, as in the ferron phase of magnetic 
semiconductors [20]. However, an excess of holes in LSCO may also be achieved by 
adding excess 0. In this case, a well defined two-phase regime is formed [21], thanks to 
the fast 0 diffusion. For x > 0.15, the equilibrium state seems to involve two chemically 
distinct phases, although a metastable uniform state can be quenched in [18]. These 
results are consistent with figure 5, as discussed above. The properties of a purely 
electronic two-phase system are briefly described in the Appendix. 

The nature of the transition into the heterogeneous phase depends on the curvature 
of the free energy as a function of n. For positive curvature (d2F/dn2 > 0), as 
at, e.g., n = 1.1 in figure 5, the free energy of the homogeneous phase is locally a 
minimum, so there is a barrier towards nucleating the stable heterogeneous phases. 
On the other hand, for negative curvature, as at n = 1.2 in figure 5 ,  the free energy 
is locally a maximum, so no nucleation is required, and the material spontaneously 
phase separates (spinodal decomposition). While the present result seems to be in 
accord with experiment (it is easier to quench in a uniform phase for n below the VHS 
peak), the model is probably too simple to accurately predict the curvature of the free 
energy. This will be sensitive to certain omitted terms, such as the entropy of mixing. 
Since the nucleation barrier for a purely electronic phase separation will be small, these 
distinctions will not modify the calculations of the Appendix. 

The sharp minimum in figure 5 is suggestive of a d-wave version of a heavy-fermion 
system, with the Fermi level pinned at a peak in the density of states. This picture is 
supported by optical reflectivity studies [22]. Millis and Lee [ 5 ]  found that the slave 
bosons contribute a characteristic optical conductivity to heavy fermions. This term 
has the Fermi liquid form, a;' - w: w 2  + (7 ikgT/h)2 .  The same result should hold 
in the present case, except that near the VHS, a;' - w1 [23]. This is precisely the result 
found experimentally [22]. However, this interpretation of the optical results is not 
universally accepted. The interested reader should consult [24]. 

The consequences of these results for high-T, superconductivity are important. 
From figures 1-3, it can be seen that the nature of the insulating transition is nearly 
independent of band structure effects (value of too), whereas the nature of the electronic 
states away from half filling (e.g. DOS) depends sensitively on too. LSCO is a two-phase 
mixture for x > 0, and the superconductivity is specifically associated with the phase 
at x = 0.15. Thus, a correct theory of high T, superconductivity must properly 
describe this phase. Since all band structure information is lost at half filling, it 
will be particularly difficult to construct a model which smoothly extrapolates to the 
superconducting state, starting from the x = 0 state. 

In the present calculations, it has been assumed that the unrenormalised band 
parameters A E ,  tCuO, too, are independent of n. This is not necessarily the case [25], 
but the additional complications do not seem to add any new physics. 

The large susceptibility peak (figure 4) is indicative of a strong electron-phonon 
coupling in these materials. Enhancement of electron-phonon coupling near a two- 
dimensional van Hove singularity has been noted previously [26], and can lead to 
an additional enhancement of the DOS peak [27]. For a one-dimensional metal, the 
combination of strong on-site repulsion and charge density wave instability would 
normally not occur. However, interchain coupling (equivalent to too # 0) strongly 
enhances the probability of such a combination [28]. 

In summary, strong electron correlation renormalises Fermi surface effects and 
structure in the density of states, but only weakly. The main effect of correlations 
lies in the magnetic response, producing a large peak in the magnetic susceptibility 
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at half filling, which can drive a transition to an antiferromagnetic insulating phase. 
The competition between a peak in the magnetic response at  half filling and a peak in 
electric response away from half filling can lead to an instability of the uniform phase at 
intermediate dopings. Nevertheless, the superconductivity is associated predominantly 
with the peak in the density of states, as is clear from an analysis of the doping 
dependence of T, [9]. 
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Appendix. Electronic instability 

Even if the slow rate of Sr diffusion allows a uniform Sr distribution to be quenched 
in, the convex nature of the free energy curve should still drive a purely electronic 
instability, with the holes spontaneously separating into two phases. This means that 
the domains will be electrically charged, so that charging effects will limit the extent 
of phase separation to the microcrystalline regime, thus explaining the observation of 
proximity effects (dependence of T, on x). In this Appendix, I give a rough estimate 
of the nature of this microcrystalline phase, generalising a similar calculation for the 
ferron phase in an antiferromagnetic semiconductor [20] to an array of two-dimensional 
discs. 

The typical domain size is set by the competition between surface tension and 
charging effects. These energies in turn depend on the size and shape of the domains. 
For simplicity, I only consider an array of conducting (x = x, e 0.178) circular droplets 
in an insulating (x = 0) background, and the symmetric state of insulating droplets in a 
conducting background. I approximate the free energy of the uniform system (figure 5) 
by a parabola: 

F,  = ~E,x(x,  - X)/X,  2 

where E, 1. 60 meV. F ,  is normalised such that the bulk energy within either type of 
domain, x = 0 or x = x,, is zero. The surface tension is dominated by the excess kinetic 
energy associated with the non-uniform hole distribution, so the average interface 
energy per excess hole is 

E, = 5rtEF/16kFR = r /R (A21 

where E ,  (kF) is the Fermi energy (wavenumber) of the holes. Defining the fraction of 
phase x = x, as f, = x/x,, and the fraction with x = 0 as f o  = 1 - f c ,  the charging 
energy can be shown to be [20] 

where e is the dielectric constant of the medium and n2, is the two-dimensional hole 
density. Note that E ,  vanishes when f, -+ 1. This is because Nagaev [20] approximated 
the unit cell as a sphere, so that as f, -+ 1 the domain just fills the unit cell. Hence, this 
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Figure 6. Free energy of inhomogeneous phases compared to that of uniform phase (dotted 
curve): the full curve is for metallic spheres in an insulating background; the broken curve 
for insulating spheres in a conducting background. Inset: equilibrium number of holes per 
conducting sphere (full curve) and grain boundary thickness parameter t (broken curve). 
The grain boundary thickness is 2t, in A. 

phase is more appropriately thought of as a grain boundary phase, with a thin layer 
of insulator coating large grains of the metallic phase. The inset to figure 6 shows that 
the grain boundary thickness, 2t, decreases by only - 30% as the doping increases 
from x , /2  to x,; over this same range, the number of holes per domain increases from 
50 to x. 

The equilibrium value of R is found by minimising the total energy of the two-phase 
system, E ,  + E,: 

For the inverse phase with insulating domains in a conducting background, the equi- 
librium state can be found by symmetry, essentially interchanging f, and f o  : thus, the 
equilibrium radius becomes just R ( l  -f,), where R(f,) is the solution of (4), and the 
minimum energy is (fo/f,)AF(l -f,). Figure 6 shows that even with charging effects, 
these inhomogeneous phases have a lower free energy, except very close to x = 0. In 
this calculation a low-frequency dielectric constant E = 84 was used [29]. The domain 
wall phase is found to have a lower free energy than the droplet phase. However, there 
may be a large kinetic barrier to forming an extended network of domain walls, so it 
may be possible to produce a metastable phase of droplets. The inset to figure 6 shows 
N ,  = n2,7rR2, the number of holes per droplet, and the grain boundary thickness, 
2t. For such small droplets, classical calculations cannot be quantitatively correct. 
Nevertheless, the calculation shows that charging effects by themselves are no barrier 
to phase separation. Since the droplets are so small, the randomly distributed Sr ions 
must play an important role, even in the absence of a classical phase separation. 

The above calculations have neglected the problems of nucleating this phase. This 
is appropriate for a purely electronic phase separation, since the critical droplet radius 
is so small that any nucleation barrier is negligible. 

These states are quite similar to the domain walls between antiferromagnetic regions 
discussed by Zaanen and Gunnarsson [30]. Moreover, similar electronic phases arise in 
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a number of situations, most (but not all) of which involve two-dimensionality. Thus, 
the scale of these domains is very similar to that found in the ferron phase [20]; a 
similar domain phase, found in association with two-dimensional Condon domains, 
may be relevant to the quantum Hall effect [31]. The domain wall phase could 
have some practical importance: the walls could act as intrinsic flux pinning centres, 
enhancing the value of the critical currents. 
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